Chat with us, powered by LiveChat
Precision Graphite Solutions


Graphel Carbon Products’ Blog Nationwide

Stay Informed

At Graphel Carbon Products, we know that you’re concerned about the latest industry trends and products worldwide. That’s why we have a blog about graphite and EDM solutions. Take a look through our articles down below to learn something new, then contact us with questions.

Week 7: Electrode Material Effect on CNC EDM

From Entegris| POCO Materials   Article by Jerry Mercer



Unrivaled advancements in EDM technologies have become an intrinsic means of ensuring success in today’s global competitive environment. Shops today must find a method of reducing manufacturing costs while boosting productivity and providing a quality mold on time while meeting ever-increasing demands in customer specifications. Oftentimes this entails upgrading capital equipment to current technological capabilities. This article will examine the use of adaptive control and introduce the effects that an electrode material may have on the efficiencies of this function. Further, it will describe the details of a test conducted with an identical rib detail machined from materials of two different classifications programmed to complete the same task.

Continue reading

Week 6: Total Cost of Ownership and Productivity Analysis for EDM

From Entegris POCO Materials    Article by Jerry Mercer


In the competitive moldmaking industry, throughput is the key to keeping production costs competitive. Shops want to increase productivity while maintaining profitable margins on their sinker EDM-related operations. Part of management’s strategy is often the inclusion of new equipment and technology. Investing in technology is as important to global competitiveness as optimizing asset ownership.

Continue reading

Week 5: Sometimes Graphite Just Isn’t Enough

From Entegris POCO        Article by Jerry Mercer


Common work metals, such as tool steels, are easy to EDM with traditional graphite electrodes.

Others are not. Because of their unique characteristics, questions continue to arise about effectively EDMing materials like beryllium copper, titanium, and tungsten carbide. Even though traditional graphite electrodes do an admirable job of EDMing these exotic metals, there is a more efficient way.

For common metals, the main criteria for selecting an electrode material may center on particle size, strengths, etc. While these characteristics are important to consider when EDMing exotic metals, the electrical resistivity — or the resistance to the current applied to the electrode— is the determining factor in choosing an electrode material. The resistivity value determines how much of the spark energy can pass through the electrode material and is available to attack the workpiece.

Continue reading

Week 4 Dealing with Graphite Dust

From Entegris Poco     Article by Jerry Mercer



Dust, a common household word that can be defined as a finely powdered substance of various matters often suspended in the air. This is no different with the dust generated when machining EDM electrodes. Anyone that has machined graphite knows that the particles generated from the machining process are very fine and have a tendency to remain airborne. However, unlike common household dust, graphite dust has characteristics that must be taken into consideration. This article will discuss these characteristics and answer often asked questions in dealing with graphite dust.

Continue reading

Week 3 Electrode Effect on a Quality EDM Finish

From Entegris Poco     Article by Jerry Mercer


A common belief in the moldmaking industry is that a lower quality electrode material can be used to produce superior surface finishes if a high quality EDM machine is used. While the technologies of the newer generation EDM sinkers have allowed the EDMer to become more proficient in the application, this technology only goes so far when it comes to producing fine surface finishes economically with low quality electrode materials. True, improved EDM sinker technologies have the ability to monitor the condition of the EDM process and make adjustments to run more efficiently. However, these changes are generally limited to optimizing the roughing stage or to eliminating arcing in the EDM cavity. Often, the production of fine surface finishes in the cavity does not come with the technological improvements of the EDM sinker unless a higher quality electrode material is used.

Continue reading

Week 2 EDM Graphite Buyer’s Guide

From Entegris Poco  Author: Rick Slimp



Unless you have money to burn, time to spare, and a great mold repair team, never use words like “equivalent to” or “as good as” when purchasing your EDM graphite. These phrases or similar terms open the door for substitution of a lower quality inferior grade that will increase your frustrations in the electrode fabrication and EDM areas. If you do not specify exactly the grade you want delivered, you might as well open your wallet and prepare for a robbery. Blunt statements, but all too true.

Through the past three decades, I have been asked many questions concerning carbon and graphite. A question I used to get on a regular basis was, “Can you make white graphite?” I don’t get this one very often anymore, either dark grey/black is in style or they just got tired of hearing my attempt at a technical explanation on why white graphite is not a possibility. Another common question is, “Do you make pencil lead?” The answer is yes, if you don’t mind the pencil cutting through your paper and scratching your desk. On more than one occasion, I have been asked, “Where is your graphite mined?” A long explanation of natural graphite vs. man- made graphite is required.

Continue reading

Week 1: EDM Training Boosts Productivity

by Entegris Poco GraphiteEDM Machine Using Electrodes

Increasing the effectiveness of EDM operations does not come solely with technological improvements in the EDM sinker. This is one of many aspects needing to be considered when working to optimize EDM performance and increase productivity. Other areas of consideration include the type of dielectric fluid, tooling and electrode material used in the EDM applications. One area often overlooked or disregarded is the training required to make the most of the many factors affecting efficient operations.

Continue reading

Tooling Types – Milling Basics

Different Types of Milling

There are many different types of tooling, the most common being work holding tools.  Work holding tools include jigs and fixtures; cutting tools for milling and grinding machines; dies for cold forming,  forging and extrusion machines; and welding and inspection fixtures. In this month’s blog, we are going to look at the basics of milling.

Milling is the machining process of using rotary cutters to remove material from a workpiece by advancing the cutter into the workpiece at a certain direction. The cutter may also be held at an angle relative to the axis of the tool.  Milling covers a wide variety of different operations and machines and is one of the most commonly used processes for machining custom parts to precise tolerances.

Milling is a cutting process that uses a milling cutter to remove material from the surface of a workpiece. The milling cutter is a rotary cutting tool, often with multiple cutting points.  The cutter in milling is usually moved perpendicular to its axis so that cutting occurs on the circumference of the cutter. As the milling begins, the cutting edges of the tool repeatedly cut into and exit from the material, shaving off chips from the workpiece with each pass. The cutting action is shear deformation; material is pushed off the workpiece in tiny clumps that hang together to a greater or lesser extent to form chips. This makes metal cutting somewhat different from slicing softer materials with a blade.

The milling process removes material by performing many separate, small cuts. This is accomplished by using a cutter with many teeth, spinning the cutter at high speed, or advancing the material through the cutter slowly; most often it is some combination of these three approaches.

There are two major classes of milling process:


    • Face Milling


In face milling, the cutting action occurs primarily at the end corners of the milling cutter. Face milling is used to cut flat surfaces (faces) into the workpiece, or to cut flat-bottomed cavities.


    • Peripheral Milling

In peripheral milling, the cutting action occurs primarily along the circumference of the cutter, so that the cross section of the milled surface ends up receiving the shape of the cutter. In this case the blades of the cutter can be seen as scooping out material from the work piece. Peripheral milling is well suited to the cutting of deep slots, threads, and gear teeth.

Many of Graphel Carbon Products’ customers find milling graphite to be very messy and damaging to their equipment.  Hence, as our milling supervisor, Jim Hoskins states, “We machine graphite, so you don’t have to.”

  • 1
  • 2
  • 4

Driving Towards a 5.0 Class Status in Six Sigma

Contact Us About
Your Needs

© All Rights Reserved.